
11 Holomorphy

11.1 Non-renormalization of the superpotential

Couplings in the superpotential can be regarded as background fields. If we
integrate out physics above a scale µ (i.e. calculate the Wilsonian effective
action) then the effective superpotential must be a holomorphic function
of the couplings. Consider a theory renormalized at some scale Λ with a
superpotential:

Wtree =
m

2
φ2 +

λ

3
φ3. (11.1)

Recall that since the R charge doesn’t commute with the SUSY generator:

[R,Qα] = −Qα, (11.2)

we have R[ψ] = R[φ]− 1, R[θ] = 1. Since

L ⊃ λφψψ (11.3)

must have zero R charge, so

3R[φ]− 2 = 0 (11.4)

So R[W ] = 2. Alternatively we could get the same result by noting:

Lint =
∫
d2θW (11.5)

Chiral supermultiplets are labeled by the R charge of the scalar compo-
nent.

U(1) × U(1)R

φ 1 1
m −2 0
λ −3 −1

(11.6)

Non-zero values for m and λ explicitly break both U(1) symmetries, but
they still lead to selection rules.

The symmetries and holomorphy of the effective superpotential restrict
it to be of the form

Weff = f(φ,m, λ) (11.7)

= mφ2h

(
λφ

m

)
(11.8)

=
∑
n

anλ
nm1−nφn+2 (11.9)
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The limit λ→ 0 restricts n ≥ 0, and the m→ 0 restricts n ≤ 1 so

Weff =
m

2
φ2 + gφ3 = Wtree (11.10)

i.e. the superpotential is not renormalized.

11.2 Wavefunction Renormalization

L = Z∂µφ
∗∂µφ+ iZψ†σµ∂µψ (11.11)

where

Z = Z(m,λ,m†, λ†, µ,Λ) (11.12)

If we integrate out modes down to µ > m we have

Z = 1 + cλλ† ln

(
Λ2

µ2

)
(11.13)

If we integrate out modes down to scales below m we have

Z = 1 + cλλ† ln

(
Λ2

mm†

)
(11.14)

So there is wavefunction renormalization, and the couplings of canonically
normalized fields run. In our example the running couplings are

m

Z
,
λ

Z
3
2

(11.15)

11.3 Integrating Out

W =
1
2
Mφ2

H +
λ

2
φHφ

2 (11.16)

This model has three global U(1) symmetries:

U(1)A U(1)B U(1)R

φH 1 0 1
φ 0 1 1

2
M −2 0 0
λ −1 −2 0

(11.17)
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If we want to integrate out down to µ < M , we can integrate out φH . The
an term in the effective superpotential has the form

φjMkλp (11.18)

To preserve the symmetries we must have j = 4, p = 2, and k = −1. By
comparing with perturbation theory we find:

Weff = −λ
2φ4

8M
(11.19)

We could also derive this exact result using the algebraic equation of motion

∂W

φH
(11.20)

Another interesting example is

W =
1
2
Mφ2

H +
λ

2
φHφ

2 +
y

6
φ3

H (11.21)

Integrating out φH yields

Weff =
m3

3y2

1− 3λyφ2

2M2
∓
(

1− λyφ2

M2

)√
1− λyφ2

M2

 (11.22)

The singularities in Weff indicate points where φH becomes massless and we
shouldn’t have integrated it out.

11.4 The Holomorphic Gauge Coupling

Using yµ ≡ xµ − iθσµθ we can write a the gauge multiplet as a chiral
superfield

W a
α = −iλa

α(y) + θαD
a(y)− (σµνθ)αF

a
µν(y)− (θθ)σµDµλ

a†(y) (11.23)

Using

τ =
θYM

2π
+

4πi
g2

(11.24)

we can write the SUSY Yang-Mills Lagrangian as a superpotential term

1
16πi

∫
d4x

∫
d2θ τW a

αW
a
α + h.c. (11.25)

=
∫
d4x− 1

4g2
F aµνF a

µν −
θYM

32π2
F aµνF̃ a

µν +
i

g2
λa†σµDµλ

a +
1

2g2
DaDa
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where

F̃ a
µν =

1
2
εµναβF a

αβ (11.26)

Note g only appears as a holomorphic parameter, but the gauge fields are
not canonically normalized. Recall that the F aµνF̃ a

µν term calculates the
topological winding number of instanton gauge configurations, though it
has no effect in pertubations theory. One instanton effects are suppressed
by

e−Sint = e
−8π2

g2 (11.27)

Recall

µ
dg

dµ
= − bg3

16π2
(11.28)

1
g2(µ)

= − b

8π2
ln
(

Λ
µ

)
(11.29)

If we integrate down to µ

Weff =
τ(Λ;µ)
16πi

W a
αW

a
α (11.30)

Since

θYM → θYM + 2π (11.31)

is a symmetry

τ =
b

2πi
ln
(

Λ
µ

)
+

∞∑
n=1

(
Λ
µ

)bn

an (11.32)

So the holomorphic gauge coupling only receives one-loop corrections and
non-perturbative corrections.
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